

2021年10月22日 第9回CMIシンポジウム

カーボンニュートラルを支える 高圧水素タンクの安全性評価技術

東京大学生産技術研究所 吉川暢宏

>カーボンニュートラルを支える高圧水素技術

▶タンクの種別と用途

>タンクの信頼性を何で保証するか?

▶破壊力学的強度評価を阻むもの

▶モニタリングによる信頼性確保の試み

カーボンニュートラルを支える 高圧水素技術

アンモニア等を媒体との可能性も あるがモビリティに関しては 高圧水素が主流

モビリティの用途拡大

https://www.intelligentenergy.com/our-products/uavs/

https://www.toyotashokki.co.jp/news/release/2016 /07/26/001318/index.html

https://www.globalrailwayreview.com/ne ws/77191/hydrogen-fuel-cell-train-tour/

http://www.samtech.co.jp/products/hpc.html

タンクの種類と用途

燃料電池自動車用はType4が主流

高圧水素容器の種別

Type1 低合金鋼製の一般容器 ・スタンド用蓄圧器として実績 増加中 ・熱処理の問題等から厚さの 制約あり	Type2 鋼製ライナーをCFRPで周方向強化 ・安価で超高圧にも対応可能と期待 ・海外での実績は多いが日本での 実績は希少 ・主要破壊モードはライナーの疲労
ТуреЗ	Туре4
アルミ合金ライナーをCFRP で全面強化 ・ 蓄圧器としては現状最も 実績があり ・ 主要破壊モードはライナー の疲労	 樹脂ライナーをCFRPで全面強化 車載用で主流 CFRPの強度をフルに活用する ことで軽量化の期待 主要破壊モードは口金/ライ ナー/CFRP界面での破壊

車載用と水素スタンド用

車載用容器

常用圧力:70 MPa(ガソリン車並みの走行距離) 温度範囲:85℃(ガソリン車並みの高速充填)から -40℃(寒冷地でのフルパワー走行)

寿 命:5000回(普通乗用車の総走行距離) 軽量設計:コンパクト性および燃費低減の観点

水素スタンド用蓄圧器

設計圧力:100 MPa程度(自動車への高速差圧充) 温度範囲:外気温 寿 命:10万回程度(事業者設定)

軽量設計:価格低減の観点

タンクの信頼性を何で保証するか?

破壊力学の適用可能性次第

法規にも垣間見える破壊力学の壁

KHKS 0220 超高圧ガス設備に関する基準

- 1. 適用範囲
- 2. 用語の意味
- 3. 材料
- 4. 設計
- 4.1 設計一般
- 4.2 設計の基本事項
- 4.3 内圧を受ける円筒胴

4.4 疲労解析

4.5 円筒胴及び関連部位の 強度解析と疲労解析

- 4.6 疲労強度の実験的評価
- 4.7 破裂前漏洩の評価
- 4.8 き裂進展解析
- 5. 工作及び検査
- 6. 耐圧試験
- 7. 気密試験

設計の基準であり実容器を 用いた破壊試験は行わない!

燃料電池自動車用タンクの 設計確認試験

- 1. CFRPに関しては試験片を用いた標準試験による許容 応力決定との方法論に持ち込めない
- 2. 供用中の容器が受けるであろう負荷を模擬し試験を 実証的に課すことで容器の信頼性を確保
- 3. 試験の項目設定は経験則に基づく(元を辿れば 天 然ガス自動車用CFRP容器の設計確認試験)
- 4. 設計ではないので不具合への対処がモグラたたきに なりがち

水素燃料電池自動車に関する国連規則(UNR134)

- → 落下試験
 - →表面に疵
 - → 薬品による表面損傷
 - → 常温圧カサイクルテスト
 - → 過剰圧力によるサイクルテスト
 - → 高温長時間駐車を模擬したダメージ
 - → 低温および高温下での充填模擬

→ 耐圧テスト 180% NWP

→ 破裂試験

破壊力学的強度評価を阻むもの

CFRPの非均質性に由来する 複雑な力学場

フィラメントワインディング製法

=>応力解析困難

CFRPのメゾスケールモデル化

CFRPタンクメゾスケールモデル化

メゾスケールモデルによる 正確なひずみ評価

容器破裂圧力を支配する炭素繊維束 繊維方向ひずみの局所的上昇を評価可能

破壊モデル設定

樹脂:

✓ひずみ速度依存弾塑性体✓引張/圧縮の非対称性

A6061 liner of 7.5 L

Type 3 試験体

メゾスケールズーミング解析

Macro-model

Meso-model

第1主ひずみの局所的上昇

- Helical layer of zooming analysis

- Hoop layers of zooming analysis

- Helical 1st and 2nd layers of axisymmetoric analysis
- Hoop 3rd and 4th layers of axisymmetoric analysis
 - Experiment

モニタリングによる信頼性確保 の取り組み

Condition Based Maintenance (CBM)の展開

基本となる前提条件: ✓開放検査なしで15年の 寿命を保証

BPo

✓ 15年を過ぎると容器の 状態に依らず廃棄

Condition-based maintenance(CBM)

- ✓ ヘルスモニタリング技術
- ✓ 自動車通信技術
- ✓ 非破壊検査技術

まとめ

- ◆高圧水素容器に限らずCFRP製品に関しては破壊力学を 適用した設計が行えない
- ◆主因は炭素繊維と樹脂により形成されるミクロ構造および メゾ構造の非均質性
- ◆現状CFRP製品の長期信頼性を確保する手段は実部品を 用いての実働荷重下での耐久試験のみ
- ◆メゾスケールシミュレーションを機軸にCFRP容器の強度評価に破壊力学を取り込む試みを実施中
- ◆モニタリングによるCBM適用を検討